
    Ug,                        d Z dgZddlZddlmZ ddlmZ ddlm	Z	 ddl
mZ dd	l
mZ dd
l
mZ ddl
mZ ej        ej        ej        ej        dZej        ej        ej        ej        dZdddZ G d d          Z	 	 	 	 ddZdS )a  
Python wrapper for PROPACK
--------------------------

PROPACK is a collection of Fortran routines for iterative computation
of partial SVDs of large matrices or linear operators.

Based on BSD licensed pypropack project:
  http://github.com/jakevdp/pypropack
  Author: Jake Vanderplas <vanderplas@astro.washington.edu>

PROPACK source is BSD licensed, and available at
  http://soi.stanford.edu/~rmunk/PROPACK/
_svdp    N)check_random_state)aslinearoperator)LinAlgError   )	_spropack)	_dpropack)	_cpropack)	_zpropack)fdFDLS)LMSMc                   J    e Zd ZdZd Zd Zed             Zed             ZdS )_AProdz
    Wrapper class for linear operator

    The call signature of the __call__ method matches the callback of
    the PROPACK routines.
    c                     	 t          |          | _        d S # t          $ r* t          t          j        |                    | _        Y d S w xY wN)r   A	TypeErrornpasarray)selfr   s     X/var/www/surfInsights/venv3-11/lib/python3.11/site-packages/scipy/sparse/linalg/_svdp.py__init__z_AProd.__init__:   sR    	5%a((DFFF 	5 	5 	5%bjmm44DFFFF	5s    0AAc                     |dk    r!| j                             |          |d d <   d S | j                             |          |d d <   d S )Nn)r   matvecrmatvec)r   transamr    xysparmiparms           r   __call__z_AProd.__call__@   sI    S==6==##AaaaDDD6>>!$$AaaaDDD    c                     | j         j        S r   )r   shaper   s    r   r,   z_AProd.shapeF   s    v|r*   c                     	 | j         j        S # t          $ rD | j                             t	          j        | j         j        d                             j        cY S w xY w)Nr   )r   dtypeAttributeErrorr!   r   zerosr,   r-   s    r   r/   z_AProd.dtypeJ   s`    	B6< 	B 	B 	B6==$&,q/!:!:;;AAAA	Bs    AAAN)	__name__
__module____qualname____doc__r   r)   propertyr,   r/    r*   r   r   r   3   sw         5 5 5% % %   X B B XB B Br*   r   r   TFMb`?c                 V   t          |          }|                                }|dvrt          d          |s|dk    rt          d          t          |           }|j        j        }	 t          |         }t          |         }n# t          $ r t          j
        t          j        d|                    rt          j        t                    j        }nt          j        t                    j        }t          |         }t          |         }Y nw xY w|j        \  }}|dk     s|t          ||          k    rt          d          |d
|z  }|d}t          |dz   |dz   |          }||k     rt          d| d| d          |rdnd}|rdnd}t          j        ||dz   fd|          }t          j        ||fd|          }|q|                    |          |d	d	df<   t          j
        t          j        d|                    r+|d	d	dfxx         d|                    |          z  z  cc<   n+	 ||d	d	df<   n # t          $ r t          d|           w xY w|
+t          j        t          j        |          j                  }
|t          j        |          j        dz  }|rpt          j        |
|||f|                                          }|||z
  }|t          ||z
  ||          k    rt          d          |dk     rt          d          n+t          j        |
||f|                                          }t          j        t/          t1          |                    t/          t1          |                    fd          }d}|s|rN||z   d|z  z   d|z  |z  z   dz   t3          d|z  |z  d|z  z   dz   |t3          ||          z            z   } d|z  }!n9||z   d|z  z   d |z  |z  z   dz   t3          ||z   d|z  dz             z   } d |z  dz   }!t          j        | |                                          }"t          j        |!t          j                  }#t          j        d|                                          }$t          j        dt          j                  }%|                                r%t          j        ||z   d!|z  z   |          }&|"|&|#f}'n|"|#f}'|r. |t8          |         |||||||||||	g|'|||$|%R  \  }}(})}}*n ||||||||||	g	|'|||$|%R  \  }}(})}}*|*dk    rt;          d"|* d#          |*dk     rt;          d$| d%| d&          |d	d	d	|f         |(|d	d	d	|f                                         j        |)fS )'a;  
    Compute the singular value decomposition of a linear operator using PROPACK

    Parameters
    ----------
    A : array_like, sparse matrix, or LinearOperator
        Operator for which SVD will be computed.  If `A` is a LinearOperator
        object, it must define both ``matvec`` and ``rmatvec`` methods.
    k : int
        Number of singular values/vectors to compute
    which : {"LM", "SM"}
        Which singular triplets to compute:
        - 'LM': compute triplets corresponding to the `k` largest singular
                values
        - 'SM': compute triplets corresponding to the `k` smallest singular
                values
        `which='SM'` requires `irl_mode=True`.  Computes largest singular
        values by default.
    irl_mode : bool, optional
        If `True`, then compute SVD using IRL (implicitly restarted Lanczos)
        mode.  Default is `True`.
    kmax : int, optional
        Maximal number of iterations / maximal dimension of the Krylov
        subspace. Default is ``10 * k``.
    compute_u : bool, optional
        If `True` (default) then compute left singular vectors, `u`.
    compute_v : bool, optional
        If `True` (default) then compute right singular vectors, `v`.
    tol : float, optional
        The desired relative accuracy for computed singular values.
        If not specified, it will be set based on machine precision.
    v0 : array_like, optional
        Starting vector for iterations: must be of length ``A.shape[0]``.
        If not specified, PROPACK will generate a starting vector.
    full_output : bool, optional
        If `True`, then return sigma_bound.  Default is `False`.
    delta : float, optional
        Level of orthogonality to maintain between Lanczos vectors.
        Default is set based on machine precision.
    eta : float, optional
        Orthogonality cutoff.  During reorthogonalization, vectors with
        component larger than `eta` along the Lanczos vector will be purged.
        Default is set based on machine precision.
    anorm : float, optional
        Estimate of ``||A||``.  Default is `0`.
    cgs : bool, optional
        If `True`, reorthogonalization is done using classical Gram-Schmidt.
        If `False` (default), it is done using modified Gram-Schmidt.
    elr : bool, optional
        If `True` (default), then extended local orthogonality is enforced
        when obtaining singular vectors.
    min_relgap : float, optional
        The smallest relative gap allowed between any shift in IRL mode.
        Default is `0.001`.  Accessed only if ``irl_mode=True``.
    shifts : int, optional
        Number of shifts per restart in IRL mode.  Default is determined
        to satisfy ``k <= min(kmax-shifts, m, n)``.  Must be
        >= 0, but choosing 0 might lead to performance degradation.
        Accessed only if ``irl_mode=True``.
    maxiter : int, optional
        Maximum number of restarts in IRL mode.  Default is `1000`.
        Accessed only if ``irl_mode=True``.
    random_state : {None, int, `numpy.random.Generator`,
                    `numpy.random.RandomState`}, optional

        Pseudorandom number generator state used to generate resamples.

        If `random_state` is ``None`` (or `np.random`), the
        `numpy.random.RandomState` singleton is used.
        If `random_state` is an int, a new ``RandomState`` instance is used,
        seeded with `random_state`.
        If `random_state` is already a ``Generator`` or ``RandomState``
        instance then that instance is used.

    Returns
    -------
    u : ndarray
        The `k` largest (``which="LM"``) or smallest (``which="SM"``) left
        singular vectors, ``shape == (A.shape[0], 3)``, returned only if
        ``compute_u=True``.
    sigma : ndarray
        The top `k` singular values, ``shape == (k,)``
    vt : ndarray
        The `k` largest (``which="LM"``) or smallest (``which="SM"``) right
        singular vectors, ``shape == (3, A.shape[1])``, returned only if
        ``compute_v=True``.
    sigma_bound : ndarray
        the error bounds on the singular values sigma, returned only if
        ``full_output=True``.

    >   r   r   z#`which` must be either 'LM' or 'SM'r   z#`which`='SM' requires irl_mode=Truer   )r/   r   z.k must be positive and not greater than m or nN
   i  z3kmax must be greater than or equal to k, but kmax (z) < k ()r&   r    r   )orderr/   )sizey              ?zv0 must be of length g      ?z0shifts must satisfy k <= min(kmax-shifts, m, n)!zshifts must be >= 0!i   	                      z#An invariant subspace of dimension z was found.zk=z0 singular triplets did not converge within kmax=z iterations) r   upper
ValueErrorr   r/   char_lansvd_irl_dict_lansvd_dictKeyErrorr   iscomplexobjemptycomplexfloatr,   minr1   uniformsqrtfinfoepsarraylowerintboolmaxint32isupper_which_converterr   conjT)+r   kwhichirl_modekmax	compute_u	compute_vv0full_outputtoldeltaetaanormcgselr
min_relgapshiftsmaxiterrandom_stateaprodtyp
lansvd_irllansvdr$   r    jobujobvuvdoptionioption	blocksizelworkliworkworkiworkdparmr(   zworkworkssigmabndinfos+                                              r   r   r   R   s   ~ &l33LKKMMEL  >??? @>???1IIE
+
C
#%c*
c" # # #?28AS11122 	'(7##(CC(5//&C%c*
c"# ;DAq	A1s1ayy==IJJJ|!t q1ua!eT""Daxx++ +&'+ + +, , 	,
 $33D$33D 	!TAXc555A
!T#S111A
 
z&&A&..!!!Q$?28AS11122 	9aaadGGGrL00a08888GGG	:AaaadGG 	: 	: 	:8Q88999	: })**
{hsmm4' C(E3z:#))++NNN >AXFs4&=!Q'''' < = = =aZZ3444  (E3.ciikkBBBhDIIDII7sCCCG I  I A$4,q03dF4K!D& 1$c!Qii4! 4! ! 4A$4,q03q1uafqj3I3II4!8E---DHV28,,,E HQciikk***EHQbh'''E
{{}}  QAS111eU"e P!+,<U,CT,0!Q7,11a"C?D"CFM"C -4"C 6;"C =B"C "C "C5#q$$
 "(dAq!UAq# "P)."P07"P9@"PBG"PIN"P "P "P5#q$ axxC$CCCE E 	E	& & && & &' ' 	' QQQU8UAaaa!eHMMOO-s22s   *B B	DD:	I I!)r   TNTTNFr   NNr   FTr8   NNN)r5   __all__numpyr   scipy._lib._utilr   scipy.sparse.linalgr   scipy.linalgr   _propackr   r	   r
   r   slansvddlansvdclansvdzlansvdrK   slansvd_irldlansvd_irlclansvd_irlzlansvd_irlrJ   r]   r   r   r7   r*   r   <module>r      sf    )     / / / / / / 0 0 0 0 0 0 $ $ $ $ $ $                         
								  
								   
  B B B B B B B B> 15JK8<DHi3 i3 i3 i3 i3 i3r*   